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Outline

* Previous Results
— Implemented LETKF on NASA fvGCM
— Assimilate simulated grid point observations

« Current Results
— Assimilate simulated rawinsonde observations
— Comparison of PSAS and LETKF for perfect model
— In spite of implementation challenges, LETKF obtains a superior
analysis than PSAS
* Planned Experiments
— Running experiments with real rawinsonde observations
— Preparing to assimilate AIRS retrievals
— Will assimilate AIRS radiances



NASA finite-volume GCM

The NASA finite-volume GCM(fvGCM) is a
quasi-operational weather forecasting model.

It has 72 zonal, 46 meridional grid-points and 55
levels.

It has highly accurate numerics but it is very
different from other models (e.g., surface
pressure is not a prognostic variable)



Local Ensemble Transform Kalman Filter
(LETKF, Hunt 2006)

d LETKF is an ensemble based
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Local Ensemble Transform Kalman Filter

Perform Data Assimilation in local patch (3D-window)

» The state estimate is updated
at the central grid red dot &l |
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> All observations (purple ©

diamonds) within the local O
region are assimilated I




Advantages of LETKF
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Matrix computations are done in

a very low-dimensional space: both
accurate and efficient, needs small
ensemble.

The analysis is computed independently

at each grid point, could be highly parallel!
Very fast! 5 minutes in a 20 PC
cluster with 40 ensemble members.

Model independent, and also do not
require adjoint of the model.

It knows about the “errors of the day”
through P".

Observations

Ensemble} Analyses

fwGCM, obs. operators

Ensemble JForecasts



Errors of the Day
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PSAS cannot
account for the
errors of the day!!



Errors of the Day
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LETKF Implementation Challenges

Very limited computational resources (shared
cluster of 20 PC’s)

Model has a very high top and strong
iInstabilities at the top

Must tune parameters of scheme

Adaptation of existing forward operators to our
scheme



Data Assimilation on NASA fvGCM with
LETKF

Experimental Design:

Perfect model scenario: A “true” trajectory 1s generated by
integrating the fvGCM model for several months.

Simulated rawinsonde observations: The observations are the
truth plus observational error as operational one. They are at
rawinsonde locations. The observation types include: zonal
wind(u), meridional wind (v), and geopotential height (H)

Inflation scheme : Multiplicative inflation 1s used.

Local patch size : Change with latitude based on the
observation coverage.
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Real rawinsonde observation locations

Observation Locations Pressure Distribution
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500hPa analysis RMS error (Global average)
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500hPa analysis RMS error (Northern Hemisphere average)
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500hPa analysis RMS error (Southern Hemisphere average)
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Feb. average analysis RMS error at different levels (Global

average)
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Time mean of zonal mean analysis RMS error
(averaged over February) and dynamical state
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Analysis RMS error (Global average):
Solving a LETKF challenge

RMS error (m)
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Conclusions

» For simulated rawinsonde observations, with operational
possible ensemble member(40), LETKF is much better than
NASA PSAS analyses after the spin-up time. The percentage
improvement is up to 50% in Southern Hemisphere, most
areas is between 30% and 40%.

» LETKF captures the error of the day, while PSAS cannot.

» LETKEF is an efficient and parallel method of data assimilation.
5 minutes in a 20 PC cluster with 40 ensemble members.

» LETKF can use the nonlinear observation operator and does
not require Jacobian or the adjoint. We can compare different
nonlinear forward operators.
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Starting now real observation experiments:
first rawinsondes, then AIRS retrievals

Planned experiments:
1) Real rawinsonde observations: The observation types

include: zonal wind (u), meridional wind (v), temperature
(T), specific humidity (q), and sea level pressure (SLP).
2) Add AIRS retrievals: T, q with high density coverage

3) Rawinsondes plus clear AIRS radiances: This 1s more
accurate but has fewer locations.

(Because we do not require the Jacobian and adjoint, we can
use L. Strow’s observation operator)

4) AIRS data impact: Compare analyses and forecasts to
estimate the impact of AIRS alone.
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Will have to optimize LETKF parameters
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